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Reminder: Fusion energy only effecient with confinement

• Coulomb barrier makes cross-section appreciable only at 
moderate energy

• Scattering cross-section >> fusion cross-section (beam 
fusion will not work)

• Need to confine a hot plasma to allow multiple 
scattering collisions per fusion (thermonuclear fusion)



Thermonuclear fusion in a hot, 
confined plasma

• Three confinement schemes: Gravitational (stars), magnetic 
(e.g. tokamak), inertial (laser fusion, hydrogen bomb)



Magnetic confinement of plasma

• Astrophysical example of magnetic confinement: prominence 
in the solar corona (TRACE satellite)

• Charged particles are confined to magnetic field lines 
(execute helical orbits around them), BUT no confinement 
along lines



The Tokamak: toroidal magnetic 
confinement

• Toroidal field lines eliminate end losses

• Need helical field to confine charged particles (they drift 
in curved fields)

• Drive current in the plasma to generate “poloidal field”



A little history: 1951 Optimism

Lyman Spitzer.



Spitzer’s fusion reactor: the stellarator
B ~ 50KG.

T> 10keV
n ~ 1014cm

Minor radius
50cm.

DT fusion 
Power. 150MW

Tube length
40-50m.

Why didn’t it work? Transport (confinement is not perfect)



Fusion Energy Balance in a Magnetic Bottle

Heat losses (Transport)
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PFUSION = PNEUTRONS + Pα = 5Pα

• External heating + Alpha heating has to balance 
losses due to transport and radiation

• If losses are too big, heating power can be bigger 
than fusion power in order to maintain temperature



A few definitions

• Q=1 is breakeven, Q=5 is 50% alpha heated, and 
Q=infinity is ignition (no external heat required)

• World record Q’s:  TFTR Q=0.27, JET Q=0.61

• Transport determines confinement time, which in 
turn sets required heating power and therefore Q 

Q =
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=
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=
5Pα
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Energy Confinement Time.



Classical (collisional) transport is 
predicted to be very small

• Charged particles collide with one another, causing a change 
in direction and a “step” across the magnetic field

• Many collisions: random-walk diffusion 

• But collisions are rare in a hot plasma (and step size is 
small), Spitzer’s reactor should have been good enough for 
ignition!



Transport by turbulence can be  significantly 
bigger than classical transport

• Not quite right: Particles “scatter” off of 
electric fields associated with collective 
oscillations in the plasma (much longer 
range than classical collisions)

• Really:  ExB motion driven by fluctuations 
causes transport (for electrostatic modes)

• What causes fluctuations?  Unstable plasma 
waves driven by free energy sources in the 
plasma



Gradient-driven instabilities 

• Global thermodynamic equilibrium would 
require the plasma to have a flat 
temperature and density profile (same T as 
wall) -- any departure from this represents 
a source of free energy

• Motions in the plasma which attempt to 
flatten temperature profile (e.g. mixing) can 
tap this free energy source (can be 
unstable)



Simple physical picture of Gradient/
Curvature driven instability

“Bad curvature” driven instability

! On the “outboard” side of the tokamak, perturbation will grow due to
drift charging and E× B motion of the plasma

! This is Rayleigh-Taylor analog in a plasma



Massively parallel simulations of tokamak turbulence

• Ion Temperature Gradient driven 
turbulence (ITG)

• Convective cells carry heat and 
particles from core to edge much 
faster than collisions



Turbulent diffusion estimates

• Mixing length estimate:  step size is correlation 
length (~size of eddy), time step is correlation 
time (or “eddy turnover time”)

• Spatial step ~10 ρi, time step ~1/ω (linear mode 
frequency) (<< collision time scale)

• Leads to diffusion coefficent a couple of orders 
of magnitude (or more!) bigger than classical 
diffusion

• Confinement gets worse with increasing heating 
power (“L-mode”), as the step size increases



Turbulence and transport 
suppression in H-mode

• Spontaneous confinement 
improvement with increased 
heating power

• Fluctuations in edge reduced, 
recycling reduced

• Edge transport barrier (and 
“pedestal”) observed

• Sheared flow (radial E field)
develops simultaneously



Sheared flow at edge coincident 
with turbulence reduction

• Shear layer forms at H-mode 
transition

• Turbulence suppressed in the 
region of the shear layer

• Transport significantly 
reduced, “pedestal” forms



Success in theoretical understanding: 
suppression of turbulence by sheared 

flow in barrier

• Sheared flow rips eddies 
apart, smaller eddies means 
shorter transport steps



Shear Suppression on The Large Plasma Device 
(LAPD) at UCLA

• 17m long, 1m ID cylindrical chamber (plasma < 60cm), Barium Oxide 
coated nickel cathode source (pulsed, 10 ms, 1 Hz rep rate)

• Typical parameters:  ne ~1012 cm-3, Te ~ 10eV, Ti ~ 1eV, 400G < B < 2kG

•  Working gases: He, Ne, Ar, H

• US DOE/NSF sponsored user facility: http://plasma.physics.ucla.edu/bapsf

http://plasma.physics.ucla.edu/bapsf
http://plasma.physics.ucla.edu/bapsf


Driven shear flow with biased rotation in LAPD
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Biasing creates electric fields in the edge and “cleans up” edge in 
visible images



Edge profiles steepen during biased rotation

• Triple Langmuir probe measured 
density, flow measurements using 
6 face Gundestrup (Mach) probe

• Measured flow consistent with 
ExB (E ~ 100 V/m), observed 
shearing rate is comparable to ω* 
(~20kHz)

• Threshold bias for steepening is 
observed

• Dynamics: profile change on 
transport timescale (movie)





Gradient scale length, fluctuation amplitude decrease at threshold

• Past threshold, Ln decreases 
dramatically, but saturates at ~ 2cm 
(ρs ~ 1cm)

• Peak EΘ fluctuation amplitude 
drops at first, but increases again at 
higher bias

• Product of magnitudes of Isat and EΘ 
fluctuations decreases by a factor 
of 5

(a)

(b)

(c)



Turbulent flux is suppressed and reversed with increasing bias

• Suppression of flux is 
coincident with profile 
steepening

• Reversal of transport flux in 
shear flows theoretically 
predicted [e.g. Terry] observed 
in other biased experiments 
[e.g Shats, Boedo]



Cross phase changes dramatically during biased rotation

(a)

(b)

(c)

(d)

• FFT spectrum: Low f 
reduction, doppler 
shift

• Coherency 
increases with bias

• Cross phase 
reduced then 
reversed



20cm

10cm

2D correlation functions sheared during biased rotation

• Correlation function sheared, with significant azimuthal correlation

• Radial correlation length is reduced, but only slightly





Shear suppression of turbulence is accepted 
explanation of H-mode, but what drives the flow? 

• Very important unsolved problem (future work for you?)

• Turbulence can self-regulate by nonlinearly driving flow 
(zonal flow, driven by Reynolds stress).  Is this the L to H 
mechanism? 

• Flows could spontaneously develop due to changes in 
poloidal flow damping [Shaing, et al show bifurcation]

• Radial electric field due to orbit loss, etc?

• Another important question:  What sets the height of the 
pedestal?  [This sets ultimate fusion performance!!]



Conflicting data in tokamaks on 
turbulent driven flow

• DIII-D shows evidence at transition 
[Moyer, Tynan, et al], NSTX does not 
[White, Zweben, Burin, Carter, et al]



Data from small experiment shows strong 
evidence for turbulence driven flow

• CSDX [Holland, Tynan, et al] directly 
measured turbulent drive and compared to 
flow measurements (above)



Conclusion
• Answer to the original question:  Why is ITER so 

darn big?

• To make confinement time large enough!  
Transport is roughly at the same rate as in 
smaller machines, but has further to go, meaning 
longer confinement time (dumb way to make a 
reactor work!)

• Challenge for you:  understand and control 
turbulence and transport so that we can build 
smaller, more economical fusion plants


